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(12) Benzene (Burdick and Jackson) and C2CI3F3 (Freon 113, Matheson) were 
shaken with H2SO4, passed through basic alumina, and distilled. Dichlo-
romethane (Mallinckrodt Spectrograde) was distilled from P2O5. Carbon 
tetrachloride (Mallinckrodt Spectrograde) was irradiated (Pyrex) in the 
presence of benzophenone, passed through basic alumina, and dis­
tilled. 

(13) Addition of ~ 1 0 - 7 M CuCI2 (with 1 % MeOH for solubility) Increased the 
rate of decomposition of 1 in CH2CI2 by a factor of ~10. 

(14) Invoking the steady-state approximation for [acetone*] leads to eq 3, 
where, under the experimental conditions, [1] is constant.8 For the case 
where kL « kD, eq 3 reduces to eq 2. 

Table I. Yield of Homopropargylic and q-AUenic Alcohols 

/*Ml][fcL/(fcL+fcD)] (3) 

(15) N. J. Turro and A. Devaquet, J. Am. Chem. Soc, 97, 3859 (1975). 
(16) (a) Calculated values of AH,0 follow: dioxetanone 1, oa. - 8 8 kcal/mol;16b 

tetramethyldioxetane, -68.8 kcal/mol.160 (b) W. H. Richardson and H. E. 
O'Neal, J. Am. Chem. Soc, 94, 8665 (1972); (c) W. H. Richardson and H. 
E. O'Neal, ibid, 92, 6553 (1970). 
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Synthesis of Homopropargylic and a-Allenic 
Alcohols from Lithium Chloropropargylide, 
Trialkylboranes, and Aldehydes1 

Sir: 

During the past few years there has been a surge of interest 
in development of novel routes for a-allenic alcohols. This has 
arisen as a consequence of the a-hydroxyallene structural 
feature being contained in many natural substances2 and 
synthetic physiologically active compounds.3 A number of the 
latter have proven to be powerful hypertensive and antiin­
flammatory agents. 

Recently we reported that protonation with acetic acid of 
organoboranes derived from trialkylboranes and lithium 
chloropropargylide (1) afforded alkylallenes 2 (eq I).4 '5 In 

ClCH2CsCLd 
L RjB, -90 °C 

2.CH,C0,H, 25 "C 
•* H2C=C=CHR (1) 

exploring the chemistry of organoboranes leading to 2, we have 
now uncovered operationally simple, high-yield syntheses of 
homopropargylic (4) and a-allenic alcohols (5) via sequential 
treatment of 1 with trialkylboranes and aldehydes. The overall 
reactions represent efficient 1,3- and 1,1-dialkylations, re­
spectively, of the readily available propargyl chloride, and thus 
pave the way to a-allenic and homopropargylic alcohols not 
readily accessible via previously available methodologies.6 

The most remarkable feature of these synthetic transfor­
mations is the discovery that the alcohol which is specifically 
formed depends on the temperature at which the organoborane 
precursor is maintained prior to its reaction with the aldehyde. 
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a The numbers in parentheses are isomeric purities. * The spectral 
data of the alcohols obtained were consistent with the assigned 
structures. c The stereochemistry of the 2-methylcyclopentyl moiety 
has not been determined. d The alcohol contained 7% of the isomeric 
alcohol resulting from the reaction of 1 with the organoborane derived 
from addition OfBH3 to the 2 position of 1-hexene. 

Thus, addition of the carbonyl compound to the organoboron 
intermediate at —78 0 C produces, after oxidative workup, 
nearly exclusively the homopropargylic alcohol (eq 2). On the 
other hand, if the organoborane is first brought to room tem­
perature and then treated with the aldehyde at - 7 8 0 C, the 
a-allenic alcohol is obtained essentially free of contamination 
by the corresponding homopropargylic alcohol (eq 3). 

A typical procedure for the preparation of the homopro­
pargylic alcohol 4 is as follows. Propargyl chloride (20 mmol) 
in THF (10 mL) was cooled to —90 0 C (liquid nitrogen-
methanol bath) and then reacted with a solution of butyllith-
ium (20 mmol, 1.6 M) in hexane while the temperature was 
maintained below - 8 0 0 C during the addition. The reaction 
mixture was stirred for an additional 10 min and, then, to the 
resultant lithium chloropropargylide (1, 20 mmol) was added 
a solution of tricyclopentylborane (20 mmol, 1.66 M) in THF 
by a double-ended needle7 over a 15-min period, with the 
temperature being kept below - 8 0 0 C during the addition. The 
mixture was stirred for 30 min at - 7 8 0 C (dry ice-acetone 
bath) and then treated with a solution of 2-propenal (20 mmol) 
in THF (4 mL) while the temperature was maintained below 
- 6 7 0 C during the addition. After the mixture was stirred for 
1 h at - 7 0 0 C, it was brought to room temperature (30 min), 
treated with methanol (10 mL), and oxidized at 30-50 0 C with 
3 N NaOH (7.2 mL) and 30% H2O2 (4.8 mL). Ether extrac­
tion, drying (MgSO4), and distillation afforded 2.44 g (75%) 
of 4. 

The corresponding a-allenic alcohol 5 was obtained by a 
slight modification of the experimental procedure described 
for the preparation of 4. Thus, the organoborane derived from 
1 and tricyclopentylborane was allowed to warm to room 
temperature prior to addition of the 2-propenal at - 7 8 0 C. A 
summary of the experimental results obtained for the syntheses 
of various homopropargylic and a-allenic alcohols is given in 
Table I. 

It is gratifying to note that the preparations of both types 
of alcohols accommodate a variety of structural features in 
both the alkylborane and aldehyde moieties.8 Moreover, 
a,/3-unsaturated aldehydes, such as acrolein and crotonal-
dehyde, react exclusively in a 1,2 fashion as exemplified by the 
preparation of the alcohols 4 and 5. However, it should be 
pointed out that the procedures utilize only one of the three 
available alkyl groups of the trialkylborane. Attempts to cir­
cumvent this by using 5-alkyl-9-borabicyclo[3.3.1]nonanes9 
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resulted in the preferential transfer of the 9-BBN moiety. On 
the other hand, the use of thexylchloroborane (B-
chloro(l,l,2-trimethylpropyl)borane,10 6) as the hydroborating 
agent provided a partial solution to the problem. Thus, treat­
ment of a terminal olefin such as 1-octene with 6 followed by 
addition of 2 molar equiv of 1 at -90 0C induced preferential 
migration of the primary group as evidenced by the formation 
of alcohol 7 (76%) on reaction of the intermediate organobo-
rane with propanal (eq 4)." However, extension of the reaction 
to 5-chlorothexylalkylboranes derived from 6 and disubstituted 
internal olefins resulted in extensive migration of the thexyl 
group. 
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The reactions leading to the homopropargylic and a-allenic 
alcohols may be depicted as follows in eq 5. The ate complex 
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3 formed by reaction of the tr ialkylborane with 1 at —90 0 C 
undergoes a spontaneous anionotropic rearrangement in which 
one alkyl group migrates from boron to the adjacent carbon 
concomitant with an electron-pair shift and loss of chloride to 
produce the allenic borane 8.4 , 1 2 T rea tmen t of 8 at - 7 8 0 C 
with the aldehyde results in an al lenic-propargylic rear­
rangement to give, after oxidative workup, the homopropar­
gylic alcohol 10. However, if the allenic borane 8 initially 
formed is allowed to warm, it rearranges to the thermody­
namically more stable propargylic borane 9.9 '1 3 This in turn 
reacts with the carbonyl group of aldehydes at - 7 8 0 C with 
bond transpositions to produce the a-allenic alcohol l l . 1 4 ' 1 7 

In connection with the mechanist ic scheme proposed in eq 
5, it should be noted that the isomeric purities of the a-allenic 
alcohols 11 obtained depend not only on the tempera ture at 
which the aldehyde is added to the reaction mixture but also 
on the aldehyde s t ructure . Use of relatively unhindered al­
dehydes such as propanal leads to the corresponding alcohols 
11 in > 9 0 % isomeric purities regardless of whether the reaction 
is carried out at —78 or at 25 0 C . On the other hand, a marked 
tempera ture effect upon the isomeric purities of the a-allenic 
alcohols 11 is observed with sterically more hindered al­
dehydes. Thus, reaction of the equilibrated organoborane with 
pivalaldehyde at —78 0 C afforded, after workup, the a-allenic 
alcohol 11 (R = cyclopentyl; R1 = J-CjHg). However, addition 
of the same aldehyde to the organoborane at 25 0 C resulted 

in the preferential formation of 10 (R = cyclopentyl; R1 = 
/-C4H9) containing only 1 1 % of the co r re spond ing a-allenic 
alcohol 11 . These results suggest tha t allenic boranes are more 
reactive than are the corresponding propargylic boranes toward 
aldehydes, especially with sterically more hindered aldehydes. 
At low temperature, equilibration of the organoboranes 8 and 
9 is sufficiently slow that the thermodynamical ly more stable 
propargylic borane 9 can effectively be trapped by the aldehyde 
to give the a-allenic alcohol 11 . However, at elevated tem­
peratures, equilibration of the organoboranes is fast, hence 
allowing the more reactive allenic borane 8 to compete favor­
ably with 9 for the aldehyde. 
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Crystal and Molecular Structure of a 
Biscyclopentadienyluranium(IV) Phosphoylide Dimer, 
[M-(CHXCH2)P(C6H5)2U(C5H5)2]2-(C2H5)20 

Sir: 

In recent years there have been a number of reports1-3 de­
scribing the coordination chemistry of phosphorus ylides with 
various main-group and transition metal atoms. The unusual 
stability of the metal carbon a bonds in the known ylide com­
plexes prompted us to investigate them as ligands toward ac-
tinides, for which no such complexes have been reported. In 
this communication we report the synthesis and crystal 
structure of the first actinide phosphoylide complex, [yu-
(CH)(CH2)P(C6Hs)2U(C5H5)I]2, which possesses an unusual 
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